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Abstract. Multimodal Positron Emission Tomography / Computed To-
mography (PET/CT) plays a key role in malignant tumor diagnosis,
staging, restaging, treatment response assessment and radiotherapy plan-
ning. The complementary nature between high resolution anatomic CT
and high sensitivity/ specificity molecular PET imaging provides accu-
rate assessment of disease status[13]. In oncology, 18-fluorodeoxyglucose
(FDG) PET/CT is the most widely used to identify and analyze metabol-
ically active tumors. In particular, FDG uptake allows more accurate
detection of both nodal and distant forms of metastatic disease Accurate
quantification and staging of tumors is the most important prognostic
factor for predicting the survival of patients and to design personal-
ized patient management plans [7][3]. Analyzing PET/CT quantitatively
by experienced medical imaging experts,/ radiologists is time consuming
and error prone. Automated quantitative analysis by deep learning algo-
rithms to segment tumor lesions will enable accurate feature extraction,
tumor staging, radiotherapy panning and treatment response assessment.
AutoPET challenge 2022 provided an open-source platform to develop
and benchmark deep learning models for automated pet lesion segmen-
tation by providing large open-source whole body FDG-PET/CT data.
We trained fivefold cross validation on residual UNET’s to automatically
segment lesions using multimodal PET/CT data from xxx subjects pro-
vided by autoPET MICCAI 2022 challenge and used adaptive ensemble
highly contributive models output as final segmentation. We achieved
xxx dice, xxx hausdroff, xxx sensitivity and xxx specificity in held out
test data set (N=156).

Keywords: CT - Abdominal organ segmentation - Multiple organs -
nnUNet.
1 Introduction

Whole body Positron emission tomography/computed tomography (PET/CT)
is widely used modality in tumor imaging to evaluate the localized tumor bur-
den, to detect symptomatic metastatic lesions early. PET/CT is a non-invasive
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means to quantify metabolically active tumors and plays a crucial role in initial
diagnosis, staging, restaging, treatment planning and recurrence surveillance in
a variety of cancers. Recent study shows that PET/CT can also provide early
information on tumor response to therapy, potentially enabling personalized pa-
tient management [2].

Many PET based radiotracers are widely used in different malignant tumors.
18-fluorodeoxyglucose (18F-FDQG) is the most commonly used radiotracers for
oncologic imaging and is based on the increased glucose metabolism in malig-
nant tumors [11][5]. The conventional tracer 18F-FDG was efficient for detecting
lesions that maintained high glucose metabolism both in the primary tumor and
metastases. In solid tumors, 18F-FDG showed its high sensitivity for detecting
metastases [4].

Annotation of lesions are done usually by expert radiologist to perform
quantitative analysis. Automatic annotation of lesions is in need of an hour to
avoid manual annotation of tumor is very labor-intensive, error prone and time-
consuming, especially in whole-body FDG-PET scans. Poor resolution and high
statistical noise in PET images, uptake of FDG in several highly metabolic but
normal, healthy tissues (e.g., brain and heart) in addition to tumor regions and a
time-dependent blood pool signal, inter subject uptake variability, sparse tumor
regions in whole body PET/CT, data acquisition variability poses further chal-
lenges in developing automatic algorithms for tumor segmentation [6] [1]. Recent
developments in deep learning models achieving highly accurate PET/CT lesion
segmentation in specific regions provides promising premise to address this issue.
A number of recent studies explored the potential of DL-based automated tumor
segmentation from PET or hybrid PET/CT examinations. Several studies have
been conducted focusing on single disease type or organs such as head and neck
cancer, liver, lung and bone lesion [12],[8],[10],[9].

Recent developments in deep learning models achieving highly accurate PET/CT
lesion segmentation in specific regions provides promising premise to address this
issue. Several recent studies explored the potential of DL-based automated tu-
mor segmentation from PET or hybrid PET/CT examinations. Several studies
have been conducted focusing on single disease type or organs such as head and
neck cancer, liver, lung and bone lesion. To extend the state of the art to segment
whole body pet lesions, AutoPET challenge 2022 provided an open-source plat-
form to develop and benchmark deep learning models for automated pet lesion
segmentation by providing large open-source whole body FDG-PET/CT data.
We trained a 3D residual UNET using five fold cross validation on AutoPET
data and performed adaptive ensemble to get final results. Our method achieved
top performing results in the challenge.

2 Materials and Methods

2.1 Data and Preprocessing

Whole body FDG-PET/CT from 900 patients, including 1014 studies provided
by autoPET challenge 2022 are used to train the models. Held out datasets
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Fig. 1. Representative Whole Body FDG PET/CT scans provided by AutoPET chal-
lenge with annotations
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consisting of 200 studies 100 studies originating from the same hospital as the
training database and 100 are drawn from a different hospital with similar ac-
quisition protocol is used to assess algorithm robustness and generalizability. In
the preprocessing step, CT data is resamples to PET resolution and normal-
ized. Two experts annotated training and test data: At the University Hospital
Tibingen, a Radiologist with 10 years of experience in Hybrid Imaging and
experience in machine learning research annotated all data. At the University
Hospital of the LMU in Munich, a Radiologist with 5 years of of experience in
Hybrid Imaging and experience in machine learning research annotated all data.
The residual UNET model is trained on five fold crossvalidation using training
set and uploaded into the challenge portal for testing in docker format.
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Fig. 2. The layers of the UNET architecture used. The input is a volume of 64x160x160
with one channels, CT. Input is resampled down five times by convolution blocks
with strides of 2. On the decoder side, skip connections are used to concatenate the
corresponding encoder layers to preserve spatial information.

2.2 Model Training Methodology

Model Architecture The nnUNET pipeline has achieved top tier performance
in multiple medical imaging segmentation competitions. Analysis of the nnUNET
pipeline and model architecture has shown that different variations sometimes
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Fig. 3. In one instance of our UNET models, each encoding layer is a series of Con-
volution, normalization, and activation function repeated twice. In another instance,
ResUNET, each encoding layer adds a residual path with convolution and normaliza-
tion.

perform better than the baseline nnUNET architecture [9] [?]. From this, a stan-
dard a variant model using residual connections was proposed for training (see
Fig. 2 and 3). The input image size of 64x160x160 with one channel, CT is used
as input. Input is resampled down five times by convolution blocks with strides of
2. On the decoder side, skip connections are used to concatenate the correspond-
ing encoder layers to preserve spatial information. Instance normalization and
leaky ReLU activation in the network layers was used. This architecture initially
used 32 feature maps, which then doubled for each down sampling operation in
the encoder (up to 1024 feature maps) and then halved for each transposed con-
volution in the de-coder. The end of the decoder has the same spatial size as the
input, followed by a 1x1x1 convolution into 1 channel and a SoftMax function.
Models are trained for five folds with loss function of Dice Sorensen Coefficient
(DSC) in combination with weighted cross entropy loss were trained. To prevent
overfitting augmentation techniques such as random rotations, random scaling,
random elastic deformations, gamma correction augmentation, mirroring and
elastic de-formation, were adopted. Each of the five models were trained for
1000 epochs with batch size of eight using SGD optimizer and learning rate
of 0.01. Dice Similarity Coefficient (DSC), and normalized surface dice (NSD),
will be used to assess different aspects of the performance of the segmentation
methods.
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2.3 Results

We trained a five fold residual UNet model for automatic whole body lesion
segmentation with robust mean dice of 0.8054 and 0.xxxx dice in validation and
held out testing respectively (Table.1)(Fig.4).

2.4 Discussion

Our method achieved similar performance in both cross fold validationa dn un-
seen heldo out data showing that it generalized well multicenter data. Adaptive
ensemble increased the performance by selectively picking model outputs with
high contribution to final ensemble. [9] and uncertainty aware segmentation cor-
rection may improve the segmentation performance.

2.5 Conclusion

We have trained a residual 3D UNet and achieved robust and generalized seg-
mentation performance on automatic whole body FDG PET/CT lesion segmen-
tation. We achieved xth rank in MICCAI AutoPET 2022 challenge out of xx
teams participated.
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