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Abstract. Recent progress in automated PET/CT lesion segmentation using 
deep learning methods has demonstrated the feasibility of this task. However, 
tumor lesion detection and segmentation in whole-body PET/CT is still a chal-
lenging task. To promote research on machine learning-based automated tumor 
lesion segmentation on whole-body FDG-PET/CT data, Automated Lesion 
Segmentation in Whole-Body FDG-PET/CT (autoPET) challenge is held, and a 
large, publicly available training dataset is provided. In this report, we present 
our solution to the autoPET challenge. We employ multi-modal residual U-Net 
with deep super vision. The experimental results for five preliminary test cases 
show that Dice score is 0.79 ± 0.21. 
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1 Introduction 

Recent progress in automated PET/CT lesion segmentation using deep learning 
methods has demonstrated the feasibility of this task. However, tumor lesion detection 
and segmentation in whole-body PET/CT is still a challenging task. One bottleneck 
for progress in automated PET lesion segmentation is the limited availability of train-
ing data. To promote research on machine learning-based automated tumor lesion 
segmentation on whole-body FDG-PET/CT data, Automated Lesion Segmentation in 
Whole-Body FDG-PET/CT (autoPET) challenge is held, and a large, publicly availa-
ble training dataset is provided. 

In this report, we present our solution to the autoPET challenge. We employ re-
sidual U-Net with deep super vision with multi-modality fashion. 

2 Proposed Method 

The input data for lesion segmentation are whole-body PET/CT volumes, and two 
volumes, i.e., CT and SUV (Standardized Uptake Value) which is obtained from PET, 
are provided for each case. CT and PET volumes are acquired simultaneously on a 
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single PET/CT scanner in one session, thus CT and PET (SUV) volumes are anatomi-
cally aligned up to minor shifts due to physiological motion. 

We use 3D encoder-decoder networks for the segmentation task. Our base model 
is residual U-Net with deep super vision [2]. Input two volumes are resampled in [2 
mm, 2 mm, 3 mm] for x, y and z direction, respectively, at first. CT and SUV vol-
umes are normalized. The minimum and maximum values are -100 and 250, respec-
tively, for CT volumes. And the minimum and maximum values are 0 and 15, respec-
tively, for SUV volumes. In the training phase, we randomly sample 3D patches from 
the input volumes. The size of a 3D patch is 48 x 48 x 32 voxels. We sample 12 
patches from each volume. When the volume includes lesions, the ratio of positive 
and negative patches in the sampling for one input volume is 3:1. We do not apply 
any augmentation. The patches of CT and SUV are concatenated to one patches as 2 
channel patches, and then the concatenated patches are fed into the segmentation net-
work. 
 The loss function is a weighted summation of Dice loss and cross entropy loss. The 
weights for Dice and cross entropy losses are 1 and 0.5, respectively. We also employ 
deep super vision for loss calculation. Intermediate outputs from several layers in the 
decoder of the model are up-sampled, loss value is calculated for each up-sampled 
output, and then the loss values are aggregated. The number of layers used in the deep 
super vision is two.  

We train multiple models. Each model is trained independently using different 
combinations of training and validate datasets, and the inference results are obtained 
by ensemble of the outputs from the models. The final likelihood score is obtained by 
averaging the likelihood scores from the models. We use five models in our experi-
ments. 

3 Experiments 

The dataset for training consists of 1014 studies of 900 patients acquired on a sin-
gle site. The dataset for preliminary evaluation consists of 5 studies.  

Our method is implemented by mainly using PyTorch [3], PyTorch Lightning and 
MONAI libraries. We use three Nvidia RTX3090 GPUs for training. 

For the training of the segmentation model, the optimizer is Adam [4] and the 
learning rate changes with cosine annealing. The initial learning rate is 0.001. The 
number of epoch is 300. The model taking the lowest loss value for the validation 
dataset is selected as the final model. 

We evaluated our method with the evaluation system provided by the organizers 
of the autoPET challenge. There are three evaluation metrics. The first one is fore-
ground Dice score of segmented lesions. The second one is volume of false positive 
connected components that do not overlap with positives, i.e., false positive volume. 
The final one is volume of positive connected components in the ground truth that do 
not overlap with the estimated segmentation mask, i.e., false negative volume. 

The results of our submission are Dice score is 0.79 ± 0.21, false positive volume 
is 0.29 ± 0.66, and false negative volume is 14.27 ± 17.31. 
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4 Conclusions 

In this report, we presented our solution for the autoPET challenge. We employ 
multi-modal residual U-Net with deep supervision. The experimental results for five 
preliminary test cases show that Dice score is 0.79 ± 0.21. 
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