
Automated segmentation of lesions from 3D
PET/CT in MICCAI AutoPET 2023 Challenge

Andriy Myronenko[0000−0001−8713−7031], Dong Yang[0000−0002−5031−4337], Yufan
He[0000−0003−4095−9104], and Daguang Xu[0000−0002−4621−881X]

NVIDIA
amyronenko@nvidia.com

Abstract. Automated lesion segmentation from 3D PET/CT allows for
quantitative disease analysis and monitoring. In this work, we describe
our solution to the AutoPET 20231 challenge. We use an automated
segmentation method Auto3DSeg2 available in MONAI3. Our method
achieves a 78% average Dice score, based on our 5-fold cross-validation
random data split.
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1 Introduction

Computer tomography (CT) provides valuable insights into human body anatomy,
with detailed information of organs and bones (see Fig. 3). Even though CT
modality can be effectively used for tumor analysis, it has a low soft tissue con-
trast, where some lesion intensity patterns are indistinct. Complimentary, 3D
Positron Emission Tomorgraphy (PET) has low spatial resolution, but allows to
effectively highlight areas of hyperactivity, which are often associated with le-
sions (see Fig. 2). Fluorodeoxyglucose (FDG) is the most widely used PET tracer
in an oncological setting reflecting glucose consumption of tissues. Combining
3D PET and CT scans allows for more accurate analysis and diagnosis.

Automated Lesion Segmentation in PET/CT (AutoPET23) challenge pro-
vides a platform for researchers to develop and evaluate their solutions for lesion
segmentation from 3D PET and 3D CT paired images [3,2]. AutoPET23 pro-
vides 1014 cases for training (which originates from 900 patients). The hidden
test set consists of 200 cases. The evaluating metrics include a combination of
DICE, false positive and false negative volume scores.

Our solution is based on Auto3DSeg from MONAI [1], using an ensemble of
20 SegResNet models [8]4, which we describe in Sec. 2.

1 https://autopet-ii.grand-challenge.org/
2 https://monai.io/apps/auto3dseg
3 https://github.com/Project-MONAI/MONAI
4 https://docs.monai.io/en/latest/networks.html#segresnetds
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2 Method

We implemented our approach with MONAI [1] using Auto3DSeg open-source
project. Auto3DSeg is an automated solution for 3D medical image segmenta-
tion, utilizing open source components in MONAI, offering both beginner and ad-
vanced researchers the means to effectively develop and deploy high-performing
segmentation algorithms.

A baseline segmentation training with Auto3DSeg can be achieved with the
following command:

1 #!/bin/bash
2 python -m monai.apps.auto3dseg AutoRunner run \
3 --input =./ input.yaml --algos=segresnet

where a user provided input configuration (input.yaml) include:

1 # This is the YAML file "input.yaml"
2 modality: CT
3 datalist: "./ dataset.json"
4 dataroot: "/data/autopet23"
5 extra_modalities: {pet : pet}

When running this command, Auto3DSeg will analyze the dataset, gener-
ate hyperparameter configurations for several supported algorithms, train them,
and produce inference and ensemble. The system will automatically scale to all
available GPUs and also supports multi-node training. The 3 minimum user op-
tions (in input.yaml) are data modality, location of the dataset (dataroot), and
the list of input filenames with an associated fold number (datalist). In addition
to a 3D CT, AutoPET23 challenge provides a 3D PET image, which should be
indicated in the config in the "extra_modalities". We generate the 5-fold equal
split assignments randomly.

Currently, the default Auto3DSeg setting trains three 3D segmentation algo-
rithms: SegResNet [8], DiNTS [5] and SwinUNETR [4] with their unique training
recipes. SegResNet and DiNTS are convolutional neural network (CNN) based
architectures, whereas SwinUNETR is based on transformers [9]. Here we used
only SegResNet for simplicity and describe its training procedure in this paper to
be self-inclusive. At inference, we ensemble 20 checkpoints of SegResNet (5-folds
trained 4 times).

2.1 Data

AutoPET23 provides 1014 PET/CT cases for training (originating from 900 pa-
tients). The hidden test set includes 200 PET/CT cases. We split the training set
into 5-folds equally, and use the following on-the-fly data normalization during
training:

– 3D CT image is normalized to [0, 1] intensity interval from a [−250, 250]
input CT interval.



Title Suppressed Due to Excessive Length 3

Fig. 1. SegResNet network configuration. The network uses repeated ResNet blocks
with batch normalization and deep supervision

– 3D PET is clipped to [0, 10], to reduce the potentially high values. We use
the SUV (standardized uptake values) PET representation, provided by the
organizers.

– We use the provided 3D CT and PET images that are already resampled to
2x2x3 mm common resolution, without any additional resampling.

Auto3DSeg can cache all data in RAM during the first training epoch to
speed up training. To reduce the cache size required, the data is automatically
cropped to an approximate foreground CT region (a bounding box around pos-
itive values).

No external datasets nor pretrained model weights were used, even though
it was permitted in the AutoPET23 challenge.

2.2 Proposed Method

The underlying network architecture is SegResNet based on [8] from MONAI5. It
is an asymmetric encode-decoder based semantic segmentation network, a U-net
alike convolutional neural network with deep supervision (see Figure 1).

The encoder part uses residual network blocks, and includes 5 stages of 1,
2, 2, 4, 4 blocks respectively. It follows a common CNN approach to downsize
image dimensions by 2 progressively and simultaneously increase feature size by
2. All convolutions are 3 × 3 × 3 with an initial number of filters equal to 32.
The decoder structure is similar to the encoder one, but with a single block
per each spatial level. Each decoder level begins with upsizing with transposed
convolution: reducing the number of features by a factor of 2 and doubling the
spatial dimension, followed by the addition of encoder output of the equivalent
spatial level.

We use a combined Dice-CE loss[7,6]6, and sum it over all deep-supervision
sublevels7:
5 https://docs.monai.io/en/latest/networks.html#segresnetds
6 https://docs.monai.io/en/stable/losses.html#diceceloss
7 https://github.com/Project-MONAI/MONAI/blob/dev/monai/losses/ds_loss.py
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Loss =

4∑
i=0

1

2i
Loss(pred, target↓) (1)

where the weight 1
2i is smaller for each sublevel (smaller image size) i. The target

labels are downsized (if necessary) to match the corresponding output size using
nearest neighbor interpolation.

We use the AdamW optimizer with an initial learning rate of 2e−4 and de-
crease it to zero at the end of the final epoch using the Cosine annealing sched-
uler8 with 3 warmup epochs. We use batch size of 1 (per each of 8 GPUs), random
crop of 192×192×384, weight decay of 1e−5, and optimize for 1000 epochs. We
use several augmentations including random rotation and scale, random flips
(all axes), random smoothing, noise, and intensity shift/scale. The input has 2
channels (concatenated CT and PET images), and the output has 1 channel
(sigmoid based binary segmentation).

2.3 Inference

Our inference is an ensemble of 20 SegResNet model checkpoints (5-folds trained
4 times). Each inference uses a sliding window strategy (same ROI size of
192×192×384 as used during training) with an overlap of 0.625. Auto3DSeg
uses SlidingWindowInfererAdapt() class from MONAI 9, which automatically
manages sliding inference stitching, as well adaptively manages GPU memory
(e.g. to offload results fully or partially to RAM). This helps to prevent GPU
OOM for large images, especially sincere AutoPET23 has a hard limit require-
ment of max 16GB GPU memory.

We use post-processing of the final segmentation result in attempt to reduce
both false positives and false negatives. To reduce false positives, we used a
binary morphology to merge connected components that are very close to each
other. And to reduce false negatives, we search the predicted probability map
to find potential candidate lesions to append, that are below the 0.5 threshold,
but have high SUV (PET) values.

The development environments used for training is presented in Table 1, and
was done inside of a docker "nvidia/pytorch:23.06-py3", including PyTorch 2.1
and MONAI 1.2. The training protocol is shown in Table 2.

3 Results

Based on our random 5-fold split, the average Dice scores per fold are shown in
Table 3 for 1 representative round of training (out of 4 total). When computing
the Dice score, only the positive cases (cases with at least some lesions) were
used during averaging.

A visualization of the ground truth labels and the predicted results of one of
the cases is shown in Fig. 2 (PET) and 3 (CT).
8 https://docs.monai.io/en/latest/optimizers.html#warmupcosineschedule
9 https://docs.monai.io/en/latest/_modules/monai/inferers/inferer.html
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Table 1. Development environments.

Docker nvcr.io/nvidia/pytorch:23.06-py3
System Ubuntu 22.04.2 LTS
RAM 400G
GPU (number and type) 8x NVIDIA V100 32G
CUDA version 12.1
Programming language Python 3.10
Deep learning framework MONAI 1.2, PyTorch 2.1

Table 2. Training protocols.

Network initialization Random
Batch size 8
Patch size 192×192×384
Total epochs 1000
Optimizer AdamW
Initial learning rate (lr) 2e-4
Lr decay schedule Cosine
Loss function Dice-CE loss
Number of model parameters 87M

Table 3. Dice score using our 5-fold data random split. Each fold corresponds to the
best checkpoint model trained during 5-fold cross-validation .

fold 0 fold 1 fold 2 fold 3 fold 4 Average
77.85 78.61 77.43 77.35 79.62 78.17±0.85
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Fig. 2. A 3D PET visualization of an example case from the AutoPET23 training set:
top row - ground truth, bottom row - predicted result.

4 Conclusion

In this work, we describe our submission to the AutoPET23 challenge. Our
solution utilizes Auto3DSeg from MONAI, and on the 5-fold cross-validation
split, it achieves a Dice score of 78% on average.
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Fig. 3. A 3D CT visualization of an example case from the AutoPET23 training set:
top row - ground truth, bottom row - predicted result.
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