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Abstract. Automated segmentation of cancerous lesions in PET/CT images is a vital initial task
for quantitative analysis. However, it is often challenging to train deep learning-based segmentation
methods to high degree of accuracy due to the diversity of lesions in terms of their shapes, sizes, and
radiotracer uptake levels. These lesions can be found in various parts of the body, often close to healthy
organs that also show significant uptake. Consequently, developing a comprehensive PET/CT lesion
segmentation model is a demanding endeavor for routine quantitative image analysis. In this work,
we train a 3D Residual UNet using Generalized Dice Focal Loss function on the AutoPET challenge
2023 training dataset. We develop our models in a 5-fold cross-validation setting and ensemble the
five models via average and weighted-average ensembling. On the preliminary test phase, the average
ensemble achieved a Dice similarity coefficient (DSC), false-positive volume (FPV) and false negative
volume (FNV) of 0.5417, 0.8261 ml, and 0.2538 ml, respectively, while the weighted-average ensemble
achieved 0.5417, 0.8186 ml, and 0.2538 ml, respectively. Our algorithm can be accessed via this link:
https://github.com/ahxmeds/autosegnet.
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1 Introduction

Fluorodeoxyglucose (*F-FDG) PET/CT imaging is the gold standard in cancer patient care, offering pre-
cise diagnoses, robust staging, and valuable therapy response assessment [I]. However, in the conventional
approach, PET/CT images receive qualitative evaluations from radiologists or nuclear medicine physicians,
which can introduce errors stemming from the inherent subjectivity among different expert readers. Incor-
porating quantitative assessments of PET images holds the promise of enhancing clinical decision-making
precision, ultimately yielding improved prognostic, diagnostic, and staging outcomes for patients undergoing
various therapeutic interventions [2, [3].

Quantitative evaluation often involves manual lesion segmentation from PET/CT images by experts,
which is a time-consuming task and is also prone to intra- and inter-observer variabilities [4]. Automating
this task is thus necessary for routine clinical implementation of quantitative PET image analysis. Tradi-
tional thresholding-based automated techniques usually miss low-uptake disease and produce false positives
in regions of physiological high uptake of radiotracers (such as the brain, bladder, etc.). To combat these
limitations, deep learning offers promise for automating lesion segmentation, reducing variability, increasing
patient throughput, and potentially aiding in the detection of challenging lesions, providing valuable support
for healthcare professionals [5] [6] [77? |.

While there have been significant strides in the field of deep learning-based segmentation, tackling the
segmentation of lesions from PET/CT images remains a challenging task. This difficulty primarily stems
from the scarcity of large, meticulously annotated publicly-accessible datasets. In the majority of research
endeavors, deep learning models are trained on relatively modest, privately owned datasets. This limitation
in data availability not only hampers models’ generalizability but also hinders their widespread adoption
for routine applications. Organizing data challenges like the AutoPET segmentation challenge [8, @], which
provides access to extensive, publicly available PET/CT datasets, marks a significant milestone in advancing
the development of highly accurate models capable of meeting the stringent criteria necessary for clinical
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implementation. The AutoPET challenge dataset stands out for its remarkable diversity, encompassing pa-
tients with various cancer types, including lymphoma, lung cancer, and melanoma alongside a group of
negative control patients. This diverse composition enhances the dataset’s representativeness and broadens
its potential applications in the medical field.

In this work, we trained a 3D Residual UNet using the training dataset (1014 PET/CT pairs and ground
truth segmentation masks from 900 patients) provided in the challenge. Testing was first performed by
submitting the trained algorithm to the challenge preliminary test phase which consisted of 5 cases. The
algorithm was then submitted to the final test phase which consisted of 200 cases for final evaluation.

2 Materials and Methods

2.1 Data and data split

The training data consisted of four cohorts, namely scans presenting lymphoma (145 cases), lung cancer
(168 cases), melanoma (188 cases), and negative control patients (513 cases). Each of these 4 cohorts was
individually split into 5 folds. The final 5 training folds were created by segregating together the images
belonging to fold f across the four cohorts, where f = {0, 1,2,3,4}. No other dataset (public or private) was
used in this work.

2.2 Preprocessing and data augmentation

The CT images were first downsampled to match the coordinates of their corresponding PET images. The
PET intensity values in units of Bq/ml were decay-corrected and converted to SUV. During training, we
employed a series of non-randomized and randomized transforms to augment the input to the network. The
non- randomized transforms included (i) clipping CT intensities in the range of [-1024, 1024] HU (ii) min-max
normalization of clipped CT intensity to span the interval [0, 1], (iii) cropping the region outside the body in
PET, CT, and mask images using a 3D bounding box, and (iv) resampling the PET, CT, and mask images
to an isotropic voxel spacing of (2.0 mm, 2.0 mm, 2.0 mm) via bilinear interpolation for PET and CT images
and nearest-neighbor interpolation for mask images.

On the other hand, the randomized transforms were called at the start of every epoch. These included (i)
random spatial cropping of cubic patches of dimensions (192, 192, 192) from the images, (ii) 3D translations
in the range (0, 10) voxels along all three directions, (iii) axial rotations by angle 6 € (—x/12,7/12), (iv)
random scaling by a factor of 1.1 in all three directions, (v) 3D elastic deformations using a Gaussian kernel
with standard deviation and offsets on the grid uniformly sampled from (0, 1), (vi) Gamma correction with
~v € (0.7,1.5), and (vii) addition of random Gaussian noise with 4 = 0 and ¢ = 1. Finally, the augmented
PET and CT patches were concatenated along the channel dimension to construct the final input for the
network.

2.3 Network

We used a 3D Residual UNet [10], adapted from the MONATI library [I1]. The network consisted of 2 input
channels, 2 output channels, and 5 layers of encoder and decoder (with 2 residual units per block) paths with
skip-connections. The data in the encoder was downsampled using strided convolutions, while the decoder
unsampled using transpose strided convolutions. The number of channels in the encoder part from the top-
most layer to the bottleneck were 32, 64, 128, 256, and 512. PReLU was used as the activation function
within the network. The network consisted of 19,223,525 trainable parameters.

2.4 Loss function, optimizer, and scheduler

We employed the binary Generalized Dice Focal Loss Laprr, = Lapr + LrL, where Lapy, is the Generalized
Dice Loss [12] and Ly, is the Focal Loss [I3]. The Generalized Dice Loss Lgpr, is given by,
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where p;;; and gy; are values of the jth voxel of the it" cropped patch of the predicted and ground truth
segmentation masks with class [ € {0, 1} respectively in a mini-batch size n; of the cropped patches and N3
represents the total number of voxels in the cropped cubic patch of size (N, N, N), where N = 192. Here,
wy = 1/(2?:1 gi1;)* represents the weight given to class [. The mini-batch size was set to n, = 4. Small
constants € = n = 107° were added to the numerator and denominator, respectively to ensure numerical

stability during training. The Focal Loss Lgy, is given by,
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where, vo = 1 and vy = 100 are the focal weights of the two classes, o(x) = 1/(1 + exp(—z)) is the sigmoid
function, and v = 2 is the focal loss parameter that suppresses the loss for the class that is easy to classify.

LcprL was optimized using the Adam optimizer. Cosine annealing scheduler was used to decrease the
learning rate from 1 x 1073 to 0 in 300 epochs. The loss for an epoch was computed by averaging the Lgprr,
over all batches. The model with the highest mean Dice similarity coefficient (DSC) on the validation fold f
was chosen for further evaluation, for all f € {0,1,2,3,4}.

2.5 Inference and postprocessing

For the images in the validation set, we employed only the non-randomized transforms. The prediction was
made directly on the 2-channel (PET and CT) whole-body images using a sliding-window technique with
a window of dimensions (192,192,192) and overlap=0.5. For final testing, the outputs of the 5 best models
(obtained from 5-folds training) were ensembled via average and weighted average ensembling to generate
the output mask. For the weighted average ensembling, the weights were chosen as the value of mean DSC
of the respective validation fold. The final output masks were resampled to the coordinates of the original
ground truth masks for computing the evaluation metrics.

2.6 Evaluation metrics

The challenge employed three evaluation metrics, namely the mean DSC, mean false positive volume (FPV)
and mean false negative volume (FNV). For a foreground ground truth mask G containing L, disconnected
foreground segments (or lesions) {G1, G, ..., G, } and the corresponding predicted foreground mask P with
L, disconnected foreground segments { P, Pa, ..., PLP}, these metrics are defined as,
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where 6(z) := 1 for = 0 and §(z) := 0 otherwise. v, and v, represent the voxel volumes (in ml) for ground
truth and predicted mask, respectively (with v, = v, since the predicted mask was resampled to the original
ground truth coordinates). The submitted algorithms were ranked separately for each of the three metrics
and the final ranking was determined based on the formula: 0.5 x rankpgc + 0.25 X rankgpy 4+ 0.25 X rankgny .
The function definitions for these metrics were obtained from the challenge GitHub page and can be accessed
via this link.


https://github.com/lab-midas/autoPET/blob/master/val_script.py
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3 Results

We report the performance of our 5 models on the 5 validation folds in Table [I} We have reported the mean
and median values of the three metrics on the respective validation folds along with standard deviation and
inter-quartile range respectively. On the preliminary test set, the average ensemble obtained DSC, FPV, and
FNV of 0.5417, 0.8261 ml, and 0.2538 ml, respectively, while the weighted average ensemble obtained 0.5417,
0.8186 ml, and 0.2538 ml, respectively.

Table 1. Network 5-fold cross-validation

Validation Metrics
Fold DSC FPV (ml) FNV (ml)
Mean Median Mean Median Mean Median
0 0.61 £ 0.26|0.71 [0.55, 0.82]| 4.16 4+ 7.79 |1.41 [0.31, 3.95||10.92 + 39.34|0.31 [0.0, 5.41
1 0.62 £+ 0.27]0.73 [0.49, 0.82]|6.02 + 14.13|1.32 [0.24, 5.61]| 5.13 + 11.53 |0.16 [0.0, 3.73
2 0.64 + 0.25/0.71 [0.52, 0.83]| 3.88 £ 7.94 (0.84 [0.19, 3.77]| 8.19 £ 20.93 | 1.0 [0.0, 7.61]
3 0.63 £+ 0.27]0.72 [0.53, 0.83]|7.56 + 13.79| 2.0 [0.52, 7.65] | 7.34 + 21.23 |0.15 [0.0, 4.63
4 0.63 £+ 0.26|0.74 (0.48, 0.82](6.37 4+ 12.37(1.74 [0.41, 6.33] 11.6 £+ 43.44 |0.34 [0.0, 4.98

Table 2. Results of the preliminary test phase

Ensemble DSC [FPV (ml)|[FNV (ml)
Average 0.5417| 0.8261 0.2538
Weighted Average|0.5417| 0.8186 0.2538

4 Conclusion and discussion

In this work, we trained a deep Residual UNet optimized via Generalized Dice Focal loss in a 5-fold cross
validation setting to segment lesions from PET/CT images. Future work will include incorporating FPV and
FNV terms into the loss function instead of just a Dice-based loss so that the predictions with high FPV or
FNV can be particularly penalized.
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