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Abstract. Tumor segmentation in medical imaging is crucial and relies
on precise delineation. Fluorodeoxyglucose Positron-Emission Tomogra-
phy (FDG-PET) is widely used in clinical practice to detect metaboli-
cally active tumors. However, FDG-PET scans may misinterpret irreg-
ular glucose consumption in healthy or benign tissues as cancer. Com-
bining PET with Computed Tomography (CT) can enhance tumor seg-
mentation by integrating metabolic and anatomic information. FDG-
PET/CT scans are pivotal for cancer staging and reassessment, utilizing
radiolabeled fluorodeoxyglucose to highlight metabolically active regions.
Accurately distinguishing tumor-specific uptake from physiological up-
take in normal tissues is a challenging aspect of precise tumor segmen-
tation. The AutoPET challenge addresses this by providing a dataset
of 1014 FDG-PET/CT studies, encouraging advancements in accurate
tumor segmentation and analysis within the FDG-PET/CT domain.
Code: https://github.com/matt3o/AutoPET2-Submission/
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1 Introduction

In the domain of oncological diagnostics, the integration of Fluorodeoxyglucose
Positron-Emission Tomography (FDG-PET) and Computed Tomography (CT)
has assumed a pivotal role, facilitating comprehensive insights into the metabolic
dynamics of various malignant solid tumor entities [1]. FDG-PET, acknowledged
for its capacity to delineate glucose consumption within tissues, holds significant
promise in therapy control and monitoring, owing to the characteristic escalated
glucose uptake by tumor lesions [3]. However, the non-specificity of FDG-PET
often introduces interpretational ambiguities, as it may also manifest in benign
or healthy tissue [6], potentially leading to erroneous diagnoses.

To mitigate this diagnostic challenge, the fusion of PET with CT has emerged
as an integrated approach, combining metabolic data with precise anatomical
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information. This combination enhances tumor detection accuracy [1], [13], of-
fering a cohesive synergy particularly valuable in clinical practice [6].

Within this evolving landscape of medical diagnostics, the Automatic Lesion
Segmentation in Whole-Body FDG-PET/CT Challenge (AutoPET)3 embodies
a critical juncture. It motivates researchers and practitioners to develop auto-
mated, bi-modal methodologies for the three-dimensional segmentation of tumor
lesions embedded within FDG-PET and CT scans [6]. The challenge acceler-
ates advancements in deep learning-based automated tumor lesion segmentation
through the provision of a large densely annotated dataset of 1014 volumes.

In this work, we propose using the well-known U-Net architecture [15] to
tackle the AutoPET challenge. Despite the ubiquity of U-Net models in medical
segmentation tasks [9], [4], achieving high performance in the domain of whole-
body PET/CT lesion segmentation has remained elusive [12], [17], [8], [16], [7]
largely due to the scarcity of training data in preceding studies [3]. Drawing
upon the insights provided by the AutoPET Challenge U-Net-based winner from
2022 [16], we undertake a practical investigation to understand the important
training parameters of the U-Net model for segmenting lesions. We believe that
it is possible to achieve a better and more robust model by focusing on the
intricacies of data pre-processing, data augmentation, learning rate scheduling,
and crop-size selection during model training. Our work and model are based on
prior experiments in interactive segmentation [14]. Thus, for our hyperparameter
tuning experiments, we present results using our interactive model. Nonetheless,
for our final submission, we exclude the integration of interactive clicks into the
model and employ its optimal hyperparameter configuration.

2 Methodology

2.1 Model Architecture

The model used for the challenge is called DynUNet, which is an adaption of the
UNet for the MONAI library [2]. Contrary to the default UNet, DynUNet does
not use max-pooling for downsampling but instead uses strided convolutions.
Additionally, the residual is passed through a convolutional layer such that the
input size from the downsampling layer matches the output size of this layer.
All of the changes can be traced back to three prior works: [10], [11], and [5].

Our default configuration of the network consists of six layers of filter size
[32, 64, 128, 256, 320, 320]. As discussed above, the convolutions are
strided with a size of [1, 2, 2, 2, 2, [2, 2, 1]], and the upsampling is
thus done in the inverse order. An architectural diagram can be found in Figure
1.

2.2 Data Pre-processing and Augmentation

Pre-processing. We restrict ourselves by using only the PET volumes from
the paired PET/CT scans. We apply multiple pre-processing transformations to

3 https://autopet-ii.grand-challenge.org/
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Fig. 1. An overview of the used DynUNet architecture.

each batch of data. Apart from changing the channel order, the orientation is
set to a RAS (Right-Anterior-Superiror) coordinate system. As the AutoPET
spacing is ≈[2, 2, 3]mm3, the data is resampled accordingly with this fixed
voxel size. The intensity of each PET image is scaled based on its voxel in-
tensity statistics with MONAI::ScaleIntensityRangePercentiled to the
0.05 and 99.95 percentiles. During training, a random crop of size 224x224x224
is sampled, with a probability of 0.6 of being centered around a tumor lesion
and 0.4 of being centered around the background. To achieve this, we utilize
the RandCropByPosNegLabeld MONAI transform. This crop is balanced by
the class label of the voxel in the crop’s center - in 60% of the cases the voxel
is positive, and in the other 40% it is negative. This ensures that the network
learns about positive and negative samples in a more balanced training regime.

Data Augmentation. We apply two types of data augmentation - random
flipping and random rotation. We apply a random flip on each spatial axis with a
probability of 0.1. We also apply a random 90-degree rotation with a probability
of 0.1 for each axis.

2.3 Data Post-processing

Since we are using a sliding window approach, the final prediction volume gets
stitched from the various output patches. This process is done with a user defined
overlap, in our case this was set to 75%.

After the result prediction a softmax is applied.

For the ensemble based solution the two steps mentioned above are done
for each of the five networks prediction separately. After the softmax on each
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prediction a voting mechanism combines the different predictions into a single
one.

2.4 Hyperparameter Tuning

As explained above most of the different experiments have been run on interac-
tive code. Nevertheless they should be representative in terms of general perfor-
mance of the network. Variations of +/- 0.5% Dice are to be expected since the
guidance signal was non-deterministic.

Sliding window versus normal inferer First of all we compare the sliding
window infererence to the normal one, figure 2.4. As it can be seen in the table,
on the interactive code the sliding window inferer wins with a lead of 2.81%
Dice.

Next different region of interest sizes have been tried out. The best performing
one here was the 128x128x128 crop. Note that the sliding window was active
during training. In the thesis it is shown that training with overlap active gains
about 1% of Dice.

This overlap means for the 128x128x128 instead a window of size 320x320x320
has been calculated, with calculations being equal to a normal inferer of size
384x384x384. As we can see a lot of overhead calculations are being done by
the sliding window inferer. However in the next subsection we will show that the
overhead calculations for the overlap actually lead to a better Dice score.

Table 1. Interactive run of Sliding Window versus Simple Inferer

Sliding Window Simple Inferer

Dice 83.83% 81.02%

Table 2. Different region of interest sizes compared. Trained on a crop of size
256x256x256.

64x64x64 128x128x128 192x192x192 256x256x256

Dice (validation) 84.74% 85.22% 83.66% 84.75%

Dice (training) 87.99% 88.46% 88.98% 88.79%

Sliding window overlap Now we will look at the overlap of the sliding window
inferer. Table 2.4 shows that increasing the overlap also increases the Dice score
of the network. In our experiments the higher the overlap the better the results
have been. This can be seen as a way of creating a mini Ensemble with same
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weights. The overlap uses a Gaussian fade away to make the regions closer the
center weight more heavily when stitching together the final output.

Additionally experiments have been run to verify the impact of training with
overlap on. Table 4, which shows a network trained on 0% overlap, overall shows
slightly worse results, especially for the higher overlaps it becomes significant.
As expected running it with 0 overlap returns slightly better results than the
network trained with overlap being forced to use none. We can thus conclude
that activating overlap during training enhances the final score.

Table 3. Non-interactive validation runs with different settings for the overlap. The
network has been trained on 25% overlap.

Experiment Overlap Dice

201 0 66.33%
202 0.25 73.04%
203 0.5 73.54%
207 0.75 74.07%

Table 4. Non-interactive validation runs with different settings for the overlap. The
network has been trained on 0% overlap.

Experiment Overlap Dice

v 208 0.0 0 66.57%
v 208 0.25 0.25 71.35%
v 208 0.5 0.5 71.99%
v 208 0.75 0.75 72.86%

Convergence behaviour with different losses Figure 2 shows the conver-
gence behaviour of the Dice loss vs the DiceCELoss. As it can be seen the Dice-
CELoss start with a higher initial validation Dice in epoch 10, 73.62% against
70.09%. Also the final Dice metric was a little bit higher, 85.47% for DiceCELoss
and 84.62% for Dice loss. However a plateau appears to be reached for both
losses. In other experiments with more iterations it was shown that this method
can reach a validation Dice of up to 87.60%.

We can thus fully recommend the DiceCELoss as a standard choice for train-
ing. It converges faster and also yields higher final scores especially in terms of
Dice.

Intensity scaling options Finally a quick comparison of different intensity
scaling options. The base run was a pre-calculated batch statistics normaliza-
tion to the 0.005 and 99.95 percentiles of the intensity. The first ScaleInten-
sityRangePercentiled applied the same percentiles but this time based on the
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statistics of a each item. The last ScaleIntensityRangePercentiled is a base run
with no clipping of the intensities, it only normalizes the intensity from 0 to 1.

As we can see the item-wise statistics outperformed the batch-wise statistics
and the clipless method.

Table 5. Different ScaleIntensity settings compared.

Base run ScaleIntensity- ScaleIntensity-
CosineAnnealingLr RangePercentiled RangePercentiled 2

(104) (148) (149)

Dice 85.63% 86.69% 85.44%

Best parameters A summary of the best found results can be found in table
2.4.

3 Proposed solutions to the AutoPET2 Challenge

We propose two different approaches for the challenge:

– A single network with seven layers as stated above, trained for 800 epochs.
– An cross-validation ensemble of five networks trained on splits of the data.

They were trained only without using the validation split. Training was done
for N/A epochs. The results of the different networks got combined with an
equally weighted voting mechanism. The network themselves are one layer
flatter, so contain only six layers. This was mostly done to speed up the
training but also to fit the five networks into the GPU memory.

Fig. 2. Comparing the Dice Loss, in MONAI called MeanDice to the DiceCELoss.

(a) Validation Dice of run 158. In this
run the DiceCELoss has been used as
the loss.

(b) Validation Dice of run 183. In this
run the MeanDice has been used as the
loss.
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Table 6. Best settings

Parameter name Setting

Network MONAI DynUNet with [32, 64, 128, 256, 320, 320,
320] filters and a depth of seven layers

Loss DiceCELoss with squared pred=False
and include background=True

Optimizer Adam

Learning rate scheduler CosineAnnealingLR (initial lr=2e-4, eta min=1e-8)
Inferer Sliding window inferer with ROI size 128x128x128, sliding

window overlap 0.75

Intensity scaling with Custom Scaling to 0.05% and 99.95% intensity percentiles
using ScaleIntensityRanged

Automatic Mixed Precision Active

4 Results

Method Train dice Results on the preliminary test set

Dice score False negative volume False positive volume

Single network 87.43% 56.52% 0.0249 1.8015

Ensemble N/A 53.82% 0.4678 1.6372
Table 7. The results of our method in the AutoPET2 challenge.

5 Post mortem: NaN errors during training if AMP is
active

In the preparation for the challenge we ran into NaN errors when training on
A100 GPUs, but only when automated mixed precision was on. During the
debugging we found out our input already contained NaNs.

The reason in our case was a training crop to positive / negative areas of
size 224x224x224. At the borders of the volume this resulted in crops which
contained almost only 0s or even only 0s. Our current hypothesis is that the
normalization on the crop produces division by 0 errors. This would make es-
pecially sense for the intensity scaling which might degrade if the input tensor
only contains 0s. However more debugging is necessary to find out the exact
transform which produces the NaN errors.

The solution is to add a filter after the pre-transform to remap all NaN values
to 0. In our case this fixed the problem and we could resume training with AMP
on the A100 GPUs.
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