Look Ma, no code: fine tuning nnU-Net for the
AutoPET II challenge by only adjusting its
JSON plans

Fabian Isensee'? and Klaus H. Maier-Hein'»23

! Division of Medical Image Computing, German Cancer Research Center (DKFZ),
Heidelberg, Germany
2 Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg,
Germany
3 Pattern Analysis and Learning Group, Department of Radiation Oncology,
Heidelberg University Hospital, Heidelberg, Germany

Abstract. We participate in the AutoPET II challenge by modifying
nnU-Net only through its easy to understand and modify 'nnUNet-
Plans.json’ file. By switching to a UNet with residual encoder, increasing
the batch size and increasing the patch size we obtain a configuration that
substantially outperforms the automatically configured nnU-Net baseline
(5-fold cross-validation Dice score of 65.14 vs 33.28) at the expense of
increased compute requirements for model training. Our final submis-
sion ensembles the two most promising configurations. At the time of
submission our method ranks first on the preliminary test set.

Keywords: First keyword - Second keyword - Another keyword.

1 Introduction

The AutoPET II challenge provides a large training dataset for segmenting tu-
mor lesions located all across the body. Input modalities are CT and PET scans.
There are 1014 training cases available stemming from 900 patients. The test
set comprises 200 images, 50 of which are drawn from the same distribution as
the train set while the remaining 150 are taken from other data sources. There
is also a preliminary test set consisting of 5 cases. Besides the raw images, the
organizers provide preprocessed images pairs where the PET and CT scans are
coregistered and cropped to the same geometry and where the PET scan in-
tensity values are transformed into standard update values (SUVs). For more
information please refer to the challenge homepage.

nnU-Net [0] is a framework that automates the configuration of UNet [0]
based segmentation pipelines for a given dataset. It has seen tremendous success
in the past, being used regularly to compete in and win segmentation compe-
titions [TOJTIBI7IRIG). It was originally developed for the Medical Segmentation
Decathlon [2] where it demonstrated exceptional generalization across datasets.

In addition to its fully automated configuration capabilities, nnU-Net sup-
ports easy interaction with its generated configurations via JSON files which


https://autopet-ii.grand-challenge.org/

2 Isensee et al.

allows users to fine tune it further without having to touch any source code.
As our contribution to the AutoPET II we set out to explore how far we take
this features. Specifically, we constrain our model search space to modifying the
nnU-Net generated 'nnUNetPlans.json’ file. No changes to the source code are
made.

2 Methods

We use the provided preprocessed images and convert them into the nnU-Net
data format. The 'modality’ for both CT and PET/SUV images it set to "CT’
in order to tell nnU-Net that intensities of both inputs represent standardized
physical quantities. We then run the default nnU-Net planning and preprocessing
steps. For more details on nnU-Net, see the original nnU-Net paper [5] or read
the documentation in the |GitHub repository.

2.1 Residual Encoder UNet

Ever since our participation in KiTS2019 [4[7] nnU-Net has build in support
for U-Nets with residual encoders. We investigate whether the default Residual
Encoder UNet generated by nnU-Net outperforms its plain UNet architecture.

2.2 Scaling with batch size

We experiment with increasing batch size, from the default of 2 all the way to
80. Thanks to nnU-Net’s ability to let configurations inherit from each other,
each new configuration only required three lines of intuitive text changes.

2.3 Scaling the patch size

Another axis along which nnU-Net can be scaled to more compute is the patch
size. We increase the patch size from the automatically configured 128x128x128
to 192x192x192 voxels. Even though no changes to the network topology are
made, the default networks configured by nnU-Net have a sufficiently large re-
ceptive field to make effective use of the larger inputs.

3 Results

All experiments are run via the standard nnU-Net 5-fold cross-validation on the
1014 training cases (stratified by patients). Models are trained from scratch and
no external data was used for training. Aside from the aforementioned modifica-
tions, no changes to the nnU-Net defaults are made. All changes are accessible
through modifying the 'nnUNetPlans.json’ file and require no code modifications.

Figure[[]summarizes our cross-validation experiments. We refer to it through-
out the remainder of this section.


https://github.com/MIC-DKFZ/nnUNet

Fine tuning nnU-Net for the AutoPET II challenge 3

AUtoPET Il scaling with nnU-Net

0.7

0.65 *
_________ ]
. @ ----=mmTooc
06 . o=
, -
ooT .o
," ’—"— 2%
-
, -
0.55 S P e
’ e .-
. ,’, ,",
’ ’, ‘,‘
.
05 K ’,’ B
@ ‘ 4 e
o " 1 -
L , &
2 0.45 - ' I
g ¢
-
E 1 "a
r' -~
0.4 , e
1 ,"
1 e
r -
0.35 J',-‘
o
'
'
0.3 ) -
Py - UNet, patch size 128x128x128

-¢- UNet, patch size 192x192x192
0.25 -® ResEncUNet, patch size 128x128x128
-#- ResEncUNet, patch size 192x192x192

02 0 10 20 30 40 50 60 70 80

batch size

Fig. 1. The Residual Encoder UNet consistently outperforms a UNet with standard
convolutional encoder. Increasing the batch size and the patch size both yield substan-
tial improvements over the respective baseline values. Increasing patch size is more
effective than the batch size. Best results are achieved with scaling both. All modifi-
cations to nnU-Net are made by editing the 'nnUNetPlans.json file’. No code changes
were required.

3.1 Residual Encoder UNet

With the default batch size of 2, the Residual Encoder UNet (red circle, Dice
28.07) appears to be outperformed by the default plain UNet (blue circle, Dice
33.28). However, upon closer inspection, fold 4 of the Residual Encoder UNet
failed to converge. On the remaining four folds the Residual Encoder UNet out-
performed the plain UNet (Dice 35.01 vs 33.53). This failure to converge is not
observed in any of the other experiments. Across all batch and patch size scaling
experiments the Residual Encoder UNet consistently outperforms its plain UNet
counterpart.

3.2 Scaling with batch size

As we can see from the batch size scaling experiments (see red line with circles as
markers) there is a clear advantage of scaling compute via increasing the batch



4 Isensee et al.

size. The Dice score improves from 28.07 all the way to 63.26 for the Residual
Encoder UNet. We observe diminishing returns with increasing batch size: from
batch size 2 to 12 the Dice score increases from 28.07 to 48.51 whereas from 48
to 80 it merely increases from 61.88 to 63.26.

3.3 Scaling the patch size

For the regular UNet and batch size 2, switching to 192x192x192 sized inputs
improved the mean Dice score from 33.28 to 44.19. In our experiments, networks
with larger patch size consistently outperform those with smaller inputs.

3.4 Putting it together

Our results indicate that a residual encoder is superior to a plain UNet on the Au-
toPET II dataset. Moreover we see that increasing both the batch and patch size
in isolation yield substantial improvements over the baseline. We therefore train
the Residual Encoder UNet with the largest batch size our GPU hardware can
manage for each of the explored patch sizes. This yields a configuration trained
with patch size 128x128x128 and batch size 80 (Dice 63.26) and a configuration
with patch size 192x192x192 and a batch size of 24 (Dice 65.14). Training one
model took about a week on 8xNvidia A100 40GB GPUs.

For our final submission we ensemble these models. Like all nnU-Net config-
urations, these models were trained via 5-fold cross-validation on the training
cases rather than one model on all data. Thus, the total number of models in
our ensemble is 10.

To cut down on inference time, we use a step size of 0.6 for the models with
patch size 128x128x128. This parameter controls how much the sliding window
is shifted between predictions as a function of the patch size. We also restrict
test time data augmentation in the form of mirroring to the sagittal and coronal
axes. Since the preliminary test set consists of just five cases we only used it to
verify that our Docker image completes the inference within the 10 minutes time
limit per case imposed by the challenge organizers. At the time of manuscript
submission our algorithm ranked first with a Dice score of 56.50, false negative
volume 0.0398 and false positive volume 0.0000. Note that the official evaluation
awards correctly predicted empty segmentation masks (no false positives) a Dice
score of 0 whereas nnU-Net would exclude those cases from mean aggregation.

4 Discussion

We build our solution using nnU-Net [5], a powerful tool for automating the
design of U-Net based segmentation pipelines and potent framework for method
development. By design we have constricted the development space of our solu-
tion to simple changes in the 'nnUNetPlans.json’ file. Not a single line of code
was written to build our method. By switching to a Residual Encoder UNet,



Fine tuning nnU-Net for the AutoPET II challenge 5

increasing the batch size and increasing the patch size, we were able to sub-
stantially improve upon the automatically configured nnU-Net baseline at the
expense of increased compute requirements for model training. Our final sub-
mission consists of an ensemble of the two best nnU-Net configurations totaling
10 individual models.

What constitutes a good model in the context of a competition is defined by
the metrics and ranking schemes used to select the winners. However, due to a
lack of time, the official evaluation scheme was not used for model selection in
this work. All decisions were simply made based on the mean Dice score of the
cross-validation, omitting the false positive and false negative predicted volumes.
Furthermore, we have not used the rank-then-aggregate scheme to compare al-
gorithms, although prior work has shown that this could be beneficial [6]. The
disregard for the official evaluation scheme is not good practice and could have
resulted in sub-par decision making.

By design we have constricted modifications to nnU-Net to its simple to un-
derstand and modify JSON files. Our intention was to demonstrate what nnU-
Net can do without touching its code. Naturally, without the code editing con-
straint, a plethora of additional modifications to nnU-Net’s data augmentation,
sampling strategy and loss function could have unlocked higher segmentation
accuracy at a lower compute budget.

The domain transfer aspect of the challenge is not covered in our experiments.
For participants without a lot of experience in PET imaging, sample images of
how such shifts could affect the images would have been useful. Even images from
data sources different than those of the test images would have been informative
and could have steered method development. In our method, we leave it to
the predefined data augmentation implemented in nnU-Net to make the models
as robust as possible. Future work could investigate whether the findings from
[3] (i.e. batch normalization + strong data augmentation) benefit the domain
robustness in CT+PET lesion segmentation.

While scaling up batch and patch size proved to be an effective strategy
on AutoPET II, scaling on other datasets has so far produced less pronounced
gains. Particularly considering the high compute requirements relative to the
standard nnU-Net (which only requires a single GPU with 10GB of VRAM),
adapting nnU-Net to use more resources by default would yield minimal gains
on average while greatly reducing the potential audience for nnU-Net. We believe
that providing simple access to crucial hyperparameters via JSON files strikes a
good balance and empowers researchers to adjust them when necessary.

Upon completion of the challenge, a detailed description for how the 'nnUNet-
Plans.json’ file was adapted will be provided as part of the nnU-Net documen-
tation at https://github.com/MIC-DKFZ/nnUNet. Pretrained weights will be
made available as well.


https://github.com/MIC-DKFZ/nnUNet

Isensee et al.

Acknowledgment

Part of this work was funded by Helmholtz Imaging, a platform of the Helmholtz
Incubator on Information and Data Science.

References

10.

. Andrearczyk, V., Oreiller, V., Boughdad, S., Rest, C.C.L., Elhalawani, H., Jreige,

M., Prior, J.O., Vallieres, M., Visvikis, D., Hatt, M., et al.: Overview of the heck-
tor challenge at miccai 2021: automatic head and neck tumor segmentation and
outcome prediction in pet/ct images. In: 3D head and neck tumor segmentation in
PET/CT challenge, pp. 1-37. Springer (2021)

. Antonelli, M., Reinke, A., Bakas, S., Farahani, K., Kopp-Schneider, A., Landman,

B.A., Litjens, G., Menze, B., Ronneberger, O., Summers, R.M., et al.: The medical
segmentation decathlon. Nature communications 13(1), 4128 (2022)

Full, P.M., Isensee, F., Jager, P.F., Maier-Hein, K.: Studying robustness of seman-
tic segmentation under domain shift in cardiac mri. In: Statistical Atlases and
Computational Models of the Heart. M&Ms and EMIDEC Challenges: 11th In-
ternational Workshop, STACOM 2020, Held in Conjunction with MICCAT 2020,
Lima, Peru, October 4, 2020, Revised Selected Papers 11. pp. 238-249. Springer
(2021)

Heller, N., Isensee, F., Maier-Hein, K.H., Hou, X., Xie, C., Li, F., Nan, Y., Mu,
G., Lin, Z., Han, M., et al.: The state of the art in kidney and kidney tumor
segmentation in contrast-enhanced ct imaging: Results of the kits19 challenge.
Medical image analysis 67, 101821 (2021)

Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature methods 18(2), 203-211 (2021)

Isensee, F., Jager, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnu-net for
brain tumor segmentation. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and
Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in
Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected
Papers, Part II 6. pp. 118-132. Springer (2021)

Isensee, F., Maier-Hein, K.H.: An attempt at beating the 3d u-net. arXiv preprint
arXiv:1908.02182 (2019)

Isensee, F., Ulrich, C., Wald, T., Maier-Hein, K.H.: Extending nnu-net is all you
need. In: BVM Workshop. pp. 12-17. Springer (2023)

Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention—-MICCAI 2015: 18th International Conference, Munich, Germany, Oc-
tober 5-9, 2015, Proceedings, Part III 18. pp. 234-241. Springer (2015)

Zhao, Z., Chen, H., Wang, L.: A coarse-to-fine framework for the 2021 kidney and
kidney tumor segmentation challenge. In: International Challenge on Kidney and
Kidney Tumor Segmentation, pp. 53-58. Springer (2021)



	Look Ma, no code: fine tuning nnU-Net for the AutoPET II challenge by only adjusting its JSON plans

